Sharon Y.R. Dent, Ph.D.

Professor of Biochemistry and Molecular Biology
Rebecca Meyer Brown and Joseph Mellinger Brown Chair in Basic Science Research
Receiving her Ph.D. from Rice University in 1986 was a wonderful day for Sharon and her proud mother, Rosie.

Sharon visited many historic sites in Washington, D.C., while completing a senior staff fellowship at the National Institutes of Health in nearby Bethesda, Maryland.

Mentoring graduate students in her laboratory has allowed Sharon to demonstrate her passion for research and teaching future scientists.

(Photo by F. Carter Smith)
I knew from an early age that I would likely be an educator, although as a child growing up in Garland, Texas, I did not even know what a Ph.D. was. Education always equaled opportunity in my parents’ eyes. As children of the Great Depression, Mom and Dad had to work hard to help keep food on the table, and neither was able to take their schooling as far as they might have wished. It is not surprising then that they taught their children that education is a gift, not an entitlement, and that we should take full advantage of any educational opportunities that came our way. They also tried to make learning fun. As a young girl back in the 1960s, I remember my dad using his new reel-to-reel tape recorder to help me record my voice as I read. I enjoyed hearing my words come out of the little electronic box; we must have spent hours doing that. My mom helped instill a love of reading by taking us to the library at least once a week once we were in school. In fact, if we were good and did all of our chores, instead of allowances we got to go to the library and check out any book we wanted. Books were real treats to us.

Looking back, I realize now that my parents also introduced me to science. Both Mom and Dad loved nature and would take us to the zoo, the aquarium, or the natural science museum in downtown Dallas every couple of years, so we came to look forward to this event and enjoyed it. My interest in science and math really blossomed in high school under the influence of three special teachers: Ms. Mathews (biology), Mr. Stockton (organic chemistry) and Mrs. Langston (algebra). On their blackboards, these potentially tedious subjects came alive, and I went off to college thinking that I would become a science teacher myself.

So how did I instead end up with a Ph.D. in biochemistry? Two closely related events changed my mind. First, I went to see my college career advisor to discuss the courses I needed to take to earn my degree in science education. I clearly remember walking into her office with a list of courses I had picked out and then watching in astonishment as she struck through all the science courses one by one and replaced them with education courses. I asked her how I would possibly be able to teach science if I did not study it myself, and she assured me that it was not necessary to understand science to be a science teacher. At that point, I began to think that perhaps I had chosen the wrong career path.

Shortly thereafter, I saw an advertisement for an open work-study position in a biochemistry lab on campus. I applied and was called in to interview with Myron (Mike) Jacobson, a young assistant professor. I was nervous, thinking that he would ask me a lot of questions about biochemistry. Instead, he gave me an even bigger scare — he asked me if I could type. (Since this was before the days of word processing, I hardly blame him for trying to find someone to help him prepare his grants, lectures and papers.)
However, typing was the only course I had ever dropped because of poor performance; in fact, I think I made history at my high school when I dropped out of typing and into trigonometry!

I confessed to Dr. Jacobson that I could not type, but he hired me anyway and turned me over to his technician, Rodney Barton, who showed me the laboratory and explained how things worked. Rodney then gave me my first assignment, a paper chromatogram. Rodney showed me how to spot the sample onto the paper with a capillary pipette and told me that it was very important to let the spot dry completely before applying the next aliquot. It was a fairly large sample, and the capillary pipette was very small, so it took me hours to spot the entire thing. But I loved every minute of it! It was the first time I had the chance to participate in a real experiment. In hindsight, I can’t help but wonder if that first task had been a test of my dedication and patience. Little did they — or I — know that it would be a turning point in my life. I literally fell in love with science in that lab, and I knew then that it was my true calling. Who would have thought that not being able to type would lead to a scientific career?

Mike and his wife, Elaine (also a scientist and professor), were great mentors, and they encouraged me to apply to graduate programs. I decided to apply to the Ph.D. program at Rice University because of the school’s outstanding reputation in biochemistry and in the sciences in general. I also needed to stay in Texas, and Rice was (and still is) one of the best universities in the state. I was very honored to be accepted. Although my parents were not sure what I would do with a Ph.D. in biochemistry and certainly did not like the idea of their middle child moving to Houston to live by herself (during my last semester at college, Dad actually started sending me newspaper clippings about shootings and other crimes in Houston), they supported my dreams. So we loaded up Dad’s pick-up, and we headed south.

As a Ph.D. student at Rice, I found another great mentor, Dr. Susan Berget. Sue is well known for discovering RNA splicing during her postdoctoral studies with Phil Sharp at MIT. She had joined the faculty at Rice not long before I joined her lab. I learned a lot from Sue, not only in terms of science but also what it takes to set up a new lab, get your first paper published in the face of powerful competitors, and achieve tenure as a molecular biologist in a department focused primarily on classical enzyme kinetics.

I also met my first husband in Sue’s lab. He was a senior undergraduate doing his honors thesis when I was coming in as a first-year Ph.D. student. We had many mutual friends and scientific interests, so we got to know each other over the next couple of years. A few years later, as we were completing our Ph.D.s, we got married. I received my degree, but my husband was in the M.D./Ph.D. program at Baylor College of Medicine, so we needed to
stay in Houston a bit longer so he could complete his M.D.

I looked for a postdoctoral position close by. My plan was to complete a short postdoctoral training position in Houston and then do a second one if necessary before looking for a faculty position. Sue and some other members of the advisory committee at Rice were somewhat worried that I took this course of action. It was unusual at that time to do more than one postdoc, and doing so was often considered to be a sign of deficient ambition or scientific aptitude. However, I was intrigued by the science going on in the lab of a relatively new assistant professor at Baylor named David Allis, so I saw the situation as an “opportunity” to work with him. That decision turned out to be another major turning point in my career, as David became a lifelong mentor, friend and advocate.

It is hard to talk about David Allis without using superlatives. He is the very personification of enthusiasm. He is a fantastic scientist and an outstanding teacher. I thought I loved science when I joined his lab, but he showed me what real scientific passion is. Not only did he work very hard, but also he took real pleasure in every experiment and every new piece of data generated. (He still does.) He expected everyone in his lab to work hard, too, but he never asked anyone to do anything that he was not willing to do himself. I began my work in the area of chromatin in Dave’s lab. At that time, his research was focused on histone modifications in a ciliated protozoan called *Tetrahymena thermophila*. My work with these little swimming creatures was vastly different from my work with HeLa cells in Sue’s lab. Perhaps this lab was where I first recognized that each model system has value and that using more than one system opens up powerful research possibilities. My own work today uses mice, yeast and mammalian cell cultures. I firmly believe that the use of these multiple systems is necessary to get needed answers to important questions.

After my husband finished his M.D./Ph.D., we were faced with the challenge of finding two scientific positions in the same city. We chose to take fellowships at the NIH in Bethesda, Maryland. My parents were again worried, because I was moving away from Texas for the first time. In their minds at least, I was moving to the far North.

At the NIH, I worked with Robert (Bob) T. Simpson. Bob was unique: he allowed his fellows total freedom in their studies. He was always available if I wanted to talk, but he gave me free reign in my research. He supported my desire to learn about yeast genetics and even paid for my training in a three-week course at Cold Spring Harbor. My time in Bob’s lab was the most fun I ever had doing research. The NIH had a strong and interactive community of chromatin researchers, and I had no responsibility other than to do what I wanted to do. I was part of Bob’s group for five years, and from him I learned the value of letting people grow into themselves. Once again,
I had chosen a wonderful, talented and caring mentor.

After leaving the NIH, my husband and I again had to find two positions in the same city; this time at the assistant professor level. We talked about different strategies for our job search. Should we send in our applications together? Should we limit ourselves to specific cities with large medical centers that were likely to have jobs available for us both? Or should we just both go for the best jobs we could, and then sort out what the other person would do? We ended up doing the latter, and, to our surprise, multiple opportunities for dual positions presented themselves. In the end, it came down to a choice between two positions in the same department at the University of Michigan in Ann Arbor or two completely independent positions back in Houston. We both loved Ann Arbor, and the science there was quite strong. However, neither of us liked the idea of constantly being compared with one another within the same department as we worked towards tenure. Also, we both had aging parents back in Texas. And although we knew that we could handle the Texas heat, we were not so sure about the Michigan winters. So, for a combination of reasons, we headed south once more.

I started my lab at M. D. Anderson Cancer Center in 1993. If I had to use one word to describe my time here, it would be “opportunity.” I have been able to expand my research program in ways I had never imagined when I first started. The institution has nurtured my career with pilot project funding and developmental awards and has celebrated my successes. I have had great students and fellows in my lab, and, through my participation in the UT Graduate School of Biomedical Sciences, I have at last achieved my original goal of becoming an educator.

I really enjoy several aspects of my career. First, of course, is the science. I love a good experiment and still get “jazzed” by discovery. Second, I love that I get to travel and meet other scientists from all over the world. Who would ever have thought that this Texas girl would one day travel to Beijing for a genetics conference and have the chance to stand on the Great Wall of China? Third, I get to work with bright and excited young scientists. Their enthusiasm continually inspires me.

Have I had disappointments? Certainly. Are there things I would do differently? Yes. In retrospect, I would have taken time to have children when I was young. My grandmother had eight kids and my mother had five. I thought I would be able to have children whenever I was ready, but I did not want to take time out for a baby when I was doing my graduate work or my postdoctoral training, so I put it off until my mid-30s, after I had taken my faculty position. It never occurred to me that I would run out of time. Before I knew it, I was 39, childless and “newly single.” My biological clock was real, and it had run out.

Another thing that I would change if I could would be the lack of
self-confidence that’s followed me for most of my career. As a student, a postdoc, and an assistant professor, I was always worried about not knowing enough and making mistakes. It wasn’t until my 40s that I gave myself permission to be human. Paradoxically, accepting my weaknesses has actually made me a stronger scientist, mentor and person.

Finally, I wish that earlier on I had spent more time just enjoying life. After my divorce, I decided to do something I had always wanted to do — take dancing lessons. Now I love to dance. I also met my new husband in dance class, and dancing is something we enjoy together. I also enjoy my dog and my hobbies, like quilting. Like my parents, I love nature and enjoy visiting natural wonders such as the Grand Canyon. I have vowed to take time to enjoy these things as I move through life, just as I enjoy my career.

As to my goal for the future, I am not a terribly sophisticated person, and fittingly, my motto is one that I saw on a frozen pizza box back when I was a student. We ate a lot of frozen and fast food in those days, and one brand of pizza we liked was Rose Totino’s. Rose’s motto was: “Be the best and be generous.” That sounds like a good plan to me.