
Purpose

We seek to evaluate whether the lean deep 

learning PocketNet model yields results 

comparable to the larger nnU-Net model in the 

automated segmentation of clinical target volumes 

and pelvic organs in CT imaging of cervical cancer 

patients.

Results

• The nnU-Net model achieved mean Dice scores > 0.70 for all structures 

except the vagina, and a mean Dice score > .90 for the sacrum, femurs, and 

pelvis (Figure 3).

• The PocketNet model achieved mean Dice scores > 0.70 for all structures 

except the vagina and parametrium, and a mean Dice score > .90 for the 

sacrum, femurs, and pelvis (Figure 3).

• Results from the Wilcoxon signed-rank test revealed that nnU-Net performed 

better than PocketNet for auto-segmentation of the sacrum, bladder, L4, L5, 

kidneys, pelvis, CTVn, PAN, parametrium, and utero-cervix (Figure 4).

Title of the Poster Presentation Goes Here
Authors of the Poster Presentation Goes Here

Institutional and/or Graduate School of Biomedical Sciences Affiliation Goes Here 

Introduction

• Cervical cancer is the fourth most prevalent 

cancer in women worldwide, primarily due to 

infection with human papillomavirus (HPV).

• Radiotherapy workflow requires manual 

contouring of tumor volumes and pelvic organs, 

but this process is time-consuming and 

resource-intensive.

• Automatic segmentation of medical images has 

been proposed to address these shortcomings. 

Convolutional neural networks (CNNs) are the 

first-line choice of deep learning model 

architecture for this task. The U-Net form, with 

its symmetric contractile and expansive paths, 

is best suited for the pixel-by-pixel classification 

and image localization.1

• U-Net optimization led to the creation of 

PocketNet, a lightweight model with reduced 

parameters designed to operate in low-

resource environments.2 

• Another variant, nnU-Net, was designed with 

the intention of automatically configuring itself 

to address cumbersome manual tuning of 

parameters.3

Methods

Autocontouring

• The dataset consisted of 82 abdominal CT 

scans of patients who received radiotherapy.

• Four structures were specifically delineated by 

a radiologist according to consensus 

guidelines, the remaining 12 were clinically 

approved structures used from treatment 

planning.

• A custom preprocessing pipeline was applied to 

remove overlap between structures using 

manually-defined set of rules. These masks 

were then compiled into a single file to train the 

model (Figure 1).

• Models with nnU-Net and PocketNet 

architectures were trained on 92 cases, 

accompanied by 5-fold cross validation. 

Quantitative evaluation

• The model performances were evaluated 

through calculation of the Dice-Sorensen 

coefficient (DSC) and 95th percentile Hausdorff 

distance (HD95) per predicted contour.

• The Dice metric was compared between 

models using a one-sided Wilcoxon signed-

rank test (p < 0.05).

  

Conclusions

• Both PocketNet and nnU-Net architectures can successfully and reliably auto-contour pelvic 

structures and tumor volumes.

• nnU-Net predicted certain structures significantly better (p < 0.05) than PocketNet at the cost of 

greater computational power.
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Fig 1. Visualization of combined mask file 

after removal of overlap between masks.

Discussion

• Both PocketNet and nnU-Net have a stronger performance on bony structures and a weaker performance on soft tissue organs and target structures.

• There is lower contrast for anatomical boundaries on CT images between soft tissue organs, so it is harder to differentiate compared to MRI images.

• Higher contrast in bony structures allows for easier differentiation on CT. 

• Both models achieved better accuracy at the center of structures, as opposed to the boundaries.

• nnU-Net performed significantly better than PocketNet at segmentation for most structures, 

• More work must be done in model optimization to differentiate between soft tissue densities on CT imaging, namely in the vagina and parametrium 

structures.

• A more detailed qualitative analysis of the outliers will be conducted to evaluate model weaknesses.

• Future work will involve physician review of model results to corroborate these findings in a clinical context. Testing clinical acceptability of contours will 

determine whether the discrepancy in performance is patent in a clinical context, and whether PocketNet outputs can be sufficient in low-resource settings.

Figure 4. Wilcoxon-signed rank test. 

Differences in Dice values from the median 

are captured with p-values, which confirms a 

difference in model performance by contour.

Contour p-value

Sacrum 3.15E-13

Femur_L  3.44E-03

Femur_R  3.44E-03

Bladder 7.78E-07

L4  1.74E-01

L5 6.55E-02

Kidney_R 7.10E-06

Kidney_L 3.97E-06

Pelvis 1.28E-13

Rectum 5.08E-03

Spinal Cord 6.43E-03

CTVn 1.66E-11

PAN 1.04E-04

Parametrium 7.97E-06

Utero-Cervix 4.52E-07

Vagina 8.66E-04

Figure 3. Quantitative performance compared between both models. (a) Mean 

DSC and (b) HD95 were calculated for each predicted contour against its ground 

truth delineation.
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Figure 2. Visualization of sample 

predicted contours against their 

ground truth equivalent. Sample 

contours from the (a) bony, (b) soft tissue 

organs, (c) target subgroups are plotted.
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