Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1 Mutant Myelodysplastic Syndromes With Ringed Sideroblasts

Vera Adema, Feiyang Ma, Rashmi Kanagal-Shamanna, Natthakan Thongon, Guillermo Montalban-Bravo, Hui Yang, Scott A. Peslak, Feng Wang, Pamela Acha, Francesc Sole, Pamela Lockyer, Margherita Cassari, Jaroslaw P. Maciejewski, Valeria Visconte, Irene Gañán-Gómez, Yuanbin Song, Carlos Bueso-Ramos, Matteo Pellegrini, Tuyet M. Tan, Rafael Bejar, Jennifer S. Carew, Stephanie Halene, Valeria Santini, Gheath Al-Atrash, Karen Clise-Dwyer Guillermo Garcia-Manero, Gerd A. Blobel, and Simona Colla

Leading Edge of Cancer Research Symposium
November 17-18, 2022
SF3B1^{MT} MDS-RS at the Single Cell Level

Ineffective erythropoiesis
Ringed Sideroblasts
SF3B1^{MT}

We profiled the hematopoietic landscape of **SF3B1^{MT} MDS-RS at the single-cell level**

Lin⁻CD34⁺ HSPCs:
- Increased Ery/Mk differentiation
- Metabolic activation in SF3B1-mutant cells

BM-MNCs:

SF3B1^{MT} MNCs:
- Increased Erythroblast at the Orthochromatic stage
EIF2AK1 depletion overcomes $SF3B1^{MT}$-induced arrest in terminal erythroid differentiation

Depletion of EIF2AK1 induces differentiation of ringed sideroblasts. EIF2AK1 as a new pharmacological target for patients with MDS-RS with $SF3B1$ mutations
Summary

BFU-E
CFU-E
Pro-E
Baso-E
Poly-E
Ortho-E

RS survival

Heme deficiency

Heme biosynthesis

Heme

SF3B1^{mt}

Hemoglobin

Globin chains

Globin mRNA

Heme biosynthesis genes and mitochondrial iron transporters

Autophagy

ATF4

elF2α

elF2α

Differentiation

VF2AK1

active

inactive

V Adema et al., Blood Cancer Discov 2022