Measuring the Effect of ITPP on Tumor Hypoxia with Multispectral Optoacoustic Tomography
Ashley K. Shin1,2, Caroline E. Robins3,4, Renee L. Chin2, Mark D. Page2
1University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
2Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
3Texas Tech University, Lubbock, TX, USA
Author contact information: Ashley Shin; ashley.k.shin@uth.tmc.edu

Introduction:
Figure 1: Hypoxia in tumors leads to poor response to T cell-based immunotherapy. A hypoxic tumor microenvironment promotes tumor growth and proliferation. Various factors contribute to hypoxic tumor microenvironment leading to decreased T cell extravasation and increased T cell apoptosis. Abbreviations: CAM, cell adhesion molecules; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; IL, interleukin; CAF, cancer-associated fibroblast; HIF-1α, hypoxia-inducible factor 1α; MDSC, myeloid-derived suppressor cell; TAM, tumor-associated macrophage; T, regulatory T cell.

Hypoxia within solid tumors creates an environment that promotes tumor growth and development. Hypoxia induces HIF-1α, which increases tumor angiogenesis. Tumor angiogenesis then generates abnormal vasculature leading to decreased expression of vascular adhesion molecules, thus decreasing T cell recruitment and extravasation. Hypoxia also induces an anti-inflammatory, immunosuppressive, M2 phenotype in macrophages that further hinders anti-Tumor T cell function and trafficking. In addition, HIF-1α induces T cell apoptosis via Fas to Fas ligand interactions. Because T cells are hindered from entering the tumor environment, the tumors are resistant to T cell-based cancer immunotherapies, thus leading to poor prognoses.

Mio-iso-ositol tripysrophosphate (ITPP) changes oxygen unloading from hemoglobin, thus changes %sO2/2. %sO2 (HbO2/Hb) where HaO2 is oxyhemoglobin and Hb is deoxyhemoglobin. ITPP also activates endothelial Phosphatase and Tensin-homologue (PTEN), thus inhibiting tumor cell growth and proliferation.

Multi Spectral Optoacoustic Tomography (MSOT) measures deoxyhemoglobin and oxyhemoglobin at distinct wavelengths. MSOT provides a non-invasive way to measure tumor hypoxia to determine response to cancer therapies. Compared to other imaging techniques like magnetic resonance imaging, MSOT is quick, patient-friendly and decreases radiation exposure to patients.

Procedure:
Day 0: Prepare and shave 5 mice (6 weeks of age) around the 4th right inguinal nipple 3 days before implantation
Day 3: Subcutaneous injection of 4T1 tumor cell line mammary epithelial tumor cells into the mammary fat pad
Day 12: Baseline MSOT imaging 9 days post-implantation (tumors are around 4.5 mm in diameter)
Day 13: MSOT imaging 10 days post-implantation and 3 hours post-injection (ITPP or phosphate buffered saline control)

Results:
The study of tumor reoxygenation with ITPP as monitored with MSOT is ongoing (Figure 4). As an example of expected results, Figures 5 and 6 demonstrate a related project that shows the classification of normoxic (Su86.86), mildly hypoxic (MIA PaCa-2) and very hypoxic (Colo357) tumors.

Conclusions:
MSOT has shown to accurately determine the oxygenation of in the Su86.86, MIA PaCa-2, Colo357 pancreatic tumor models in mice. MSOT has the potential to determine changes in tumor oxygenation in response to ITPP.

Future Directions:
MSOT will continue to be utilized to determine the %sO2 of tumors. MSOT is currently being tested within the clinical setting on human patients. To continue investigating if ITPP improves the effectiveness of checkpoint blockade, further studies will investigate the effect of ITPP on tumor size and the effect of ITPP on immunogenicity. If ITPP shows to reduce tumor size and increase immunogenicity, the ITPP injection will be effective in improving responses to checkpoint blockade immunotherapy.

References:

Acknowledgements:
I would personally like to thank Renee Chin, Caroline Robins, Marty Page, Michelle Zalies, Jorge de la Cerda, William Schuler, and other fellow lab mates for support, assistance with experimentation, and critique. I would also like to express my gratitude for opportunity to be a part of the 2022 MD Anderson Summer Imaging Research Program.

Figure 2: The wavelengths absorbed by various media. MSOT can be used to detect the oxygenation of tumors because oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) absorb distinct wavelengths of light. Figure courtesy of Thera Medical, Inc.

Figure 3: The use of MSOT to determine the level of oxygenation within the tumor environment. Mouse is given 3% medical grade air; MSOT emits light at different wavelengths (700, 730, 800, 850, 900, 1055 nm). The light is absorbed by oxyhemoglobin and deoxyhemoglobin, which undergoes thermoelastic expansion, also known as the optoacoustic effect. The thermoacoustic expansion results in ultrasound waves. Spectral unmixing of the tumor image separates the oxyhemoglobin and deoxyhemoglobin absorption. %sO2 is calculated, and the overall oxygenation of the tissue is obtained. The oxygenation levels from the baseline MSOT scan and post-ITPP injection scan are obtained and compared to determine if ITPP improved oxygenation.

Figure 4: Baseline MSOT image (left) of the 4T1 mammary epithelial tumor on the 4th right inguinal nipple before ITPP injection. Post-injection MSOT image (right) of the 4T1 mammary epithelial tumor on the 4th right inguinal nipple 3 hours post-ITPP injection. The tumor was about 4 to 5 millimeters in diameter. The leg and spinal cord were used as landmarks to find the tumor before the scan. After completing the scan, both sides of the tumor scans (baseline and post-injection) were spectrally unmixed to separate the oxyhemoglobin and deoxyhemoglobin absorption.

Figure 5: %sO2 values from Su86.86 (green), MIA PaCa-2 (blue), and Colo357 (red) tumor models. MIA PaCa-2 (blue) and Colo357 (red) tumor models are 23% O2 medical grade air. At constant temperature, the MSOT showed a consistent increase, confirming the tumor was stable when breathing 21% O2.

Figure 6: The average value and standard deviation of %sO2 of 10 mice with Su86.86; 10 mice with MIA PaCa-2, and 10 mice with Colo357 at breathing 21% O2. Su86.86, MIA PaCa-2, and Colo357 are pancreatic tumor model cell lines obtained from patients and conditioned to grow in immunocompromised mice.