Targeting Medium-Chain Acyl-CoA Dehydrogenase (MCAD) for Glioblastoma (GBM)

MCAD as a key vulnerability unique to GBM identified by an in vivo functional genomic screen

2022 Leading Edge of Cancer Research Symposium hosted by MD Anderson

GBM is the most common and aggressive primary brain cancer, with about 12,000 new diagnoses each year.

Malignant Brain Tumor Statistics, 2021

Not much improvement in survival since 1975 for elders

A functional genomic screen of metabolism genes in an in vivo model using patient-derived GBM cells (GSCs) uncovered importance of enzymes involved in fatty acid oxidation.

Elevated expression of MCAD in patient GBM samples vs. normal brain.

ACADM mRNA levels in glioma subtypes vs. normal brain (TCGA data set).

Immunohistochemistry for MCAD on tissue microarray derived from normal brain and GBM tissue

CA: A Cancer J Clinicians, 71(5): 381-406. DOI: 10.3322/caat.21693. Cancer Discov, 11(11): 2904-2923. DOI: 10.1158/2159-8290.CD-20-1137.

Downregulation of MCAD resulted in severe mitochondrial failure in GBM and longer animal survival

2022 Leading Edge of Cancer Research Symposium hosted by MD Anderson

MCAD-knockdown dramatically attenuated tumor growth using GSC8.11 and GSC6.27.

MCAD-knockdown significantly extended survival time.

<u>Downregulation of MCAD impaired mitochondrial</u> function

oxygen consumption rate significantly decreased in basal respiration and reserve respiratory capacity in *ACADM*-deleted GSCs

decrease in ATP content in MCAD-depleted GSCs

<u>Lipid accumulation and reactive oxygen species</u> (ROS)-related damage in MCAD-knockdown GSCs

GSC 8.11 xenograft tumor tissues showed lipid accumulation upon ACADM silencing

MCAD-knockdown GSC 8.11 partially rescued in fatty acid free medium (left) and by GSH (right)

2022 Leading Edge of Cancer Research Symposium hosted by MD Anderson

Developing potent, selective MCAD inhibitors

Hits identified by high-throughput screen of 278k compounds based on RF-MS.

- ◆ IACS-050595-000-2, IC50 = 1000 nM
- ▲ IACS-135587-000-1, IC50 = 8238 nM
- ▼ IACS-075710-000-1, IC50 = 55 nM

MCAD structures with screening hits guides small molecule optimization.

Crystal structure of MCAD:Octanoyl-CoA

Cryo-EM structure of MCAD

Example of a partially optimized screening hit with cellular potency $< 1 \mu M$.

Properties	Cmpd ID: 75915
MCAD IC ₅₀ (nM)	37
SCAD IC ₅₀ (nM)	>5,600
LCAD IC ₅₀ (nM)	>5,600
VLCAD IC ₅₀ (nM)	>5,600
MCAD CETSA IC ₅₀ (nM)	<mark>~200</mark>
MCAD OCCT (nM)	<mark>540</mark>
Pampa Pe (x10 ⁻⁶ cm/s (% rec))	11(60%)
Plasma St. (m/r/d/h $t_{1/2}$ min)	330/100/360/99
MW/cLogP/TPSA	459/2.28/116
MPO/BBB	3.83/3.16

F Yu¹, P Leonard¹, M Hamilton¹, F Puca², N Pham², N Rogers¹, F Alvarez¹, C Rodriguez¹, V Nair¹, N Akkaladevi¹, R Thapar¹, S Vaccaro¹, A Mendiola¹, Q Xu¹, M Geck Do¹, J Cross¹, M Soth¹, Y Jiang¹, G Draetta², and P Jones¹

¹ Institute for Applied Cancer Science ² Department of Genomic Medicine