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Introduction

Most common primary intraocular tumor in adults: ~5 cases per million per year in US

0 Around 50% patients develop metastatic disease predominantly to the liver:
» No effective therapy: median OS 10.2 months
» 2022 Breakthrough Therapy Designation to the first-in-class bispecific fusion protein
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0 Malignant transformation is suggested to be based on a combination of two main events:
» Activation of the Gag/11 pathway
> “BSE” event: inactivation of BAP1, or mutations in SF3B1 or EIF1AX
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Melanoma of the iris

L Disease progression driven by chromosome-level aberrations (~97% chromosome 3 copy-loss)
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+ How does chromosome 3 copy-loss provide fitness/metastatic advantage in u

veal melanoma?

Results

CRISPR-based centromere targeting successfully generates M3 isogenic clones
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Figure 1. (A) Generation of Monosomy 3 isogenic clones using CRISPR-based centromere targeting. Clonal selection by
gPCR and validation via karyotyping. (B) PCA of Parental model and isogenic clones (Disomy 3 and Monosomy 3). (C)

Comprehensive characterization strategy to inform on the biology of uveal melanoma.

Monosomy 3 Isogenic Clones Recapitulate Late-Stage Uveal Melanoma
Metastatic Phenotypes
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Figure 2: (A) Actin and DAPI staining for morphological characterization of isogenic models in vitro. (B) Immunoblotting of
SNAIL and N-Cadherin across isogenic models. (C) Orthotopic modeling of select luciferated isogenic clones and subsequent
IHC characterization outgrowing tumor (Masson’s Trichrome staining of
differences between orthotopic Disomy 3 and Monosomy 3 isogenic clones (Fontana-Masson Strain for Melanin). (E)
Intrasplenic injection assay of luciferated Disomy and Monosomy 3 isogenic clones (Day 27 Timepoint). (F) Development of a
successful eye-to-liver metastasis model leveraging luciferated Disomy 3 and Monosomy 3 isogenic clones.
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TRACTION Platform for the Integrative Analysis of D3 vs. M3 Isogenic Clones

Isogenic D3 vs M3 Clones
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Figure 3: Overview of multiomic characterization platform implemented by TRACTION to characterize Disomy 3 and Monosomy
3 isogenic clones. Integrated data derived from the isogenic clones is continually cross referenced against other uveal melanoma
models and patient datasets in order to characterize model artifacts and avenues of potential translation.

THE UNIVERSITY OF TEXAS

Characterizing the role of chromosome 3 copy-loss in driving late-stage Uveal Melanoma = MDAnderson

Cancer Center

Making Cancer History”’

Chromosome 3 Copy-Loss Results in Global Transcriptomic, Chromatin-Level
Restructuring, and Differential Motif Accessibility
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Figure 4: (A) Differential transcriptional enrichment in D3 vs. M3 clones. (B) Differential gene-level enrichment localized across
Chromosome 3. (C) Chromosome-level differential gene enrichment. (D) ATACseq results highlighting differential peaks in D3 vs.
M3 clones. (E) Venn diagram of differential peaks identified in D3 vs. M3 clones (p < 0.05).

Conclusions

U First successful generation of isogenic Disomy 3 and Monosomy 3 clones allows to start understanding the nature

of chromosome 3 copy-loss
U Ongoing characterization strategy to explore uveal melanoma biology ranges from phenotypic profiling, in vivo
model development, identification and validation of context-specific dependencies and multiomic characterization
U Monosomy 3 isogenic clones recapitulate late-stage uveal melanoma phenotypes in vitro and in vivo
» Monosomy 3 clones exhibit morphological alterations that correspond with a range of protein markers associated with
increased mesenchymal properties, including SNAIL and N-Cadherin
» Monosomy 3 isogenic clones invade the choroid layer at the edge of the eye compared to Disomy 3 models
> Intrasplenic injections highlight increased liver seeding and outgrowth in Monosomy 3 clones
» Developed first successful modeling of eye-to-liver metastases, highlighting liver-specific metastatic outgrowth

U Chromosome 3 copy-loss induces significant transcriptional alterations via chromatin restructuring

The TRACTION rare-tumor platform:
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% Enables multiomic characterization and data integration for internally generated D3 and M3 isogenic clones, along with
additional uveal melanoma models and patient datasets, to work towards translatable findings.

» Aims to characterize the biology of chromosome 3 copy-loss and ultimately identify context-specific vulnerabilities for

therapeutic intervention.
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