Modified bispecific antibodies blocking both PD-L1 and PD-L2 engagement of PD-1 show higher ADCC potential and in vivo anti-tumor response

Ashley Gelin, Coline A. Couillault, Anupallavi Srinivasamani, Qinying Liu, and Michael A. Curran
Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030

Background

- High efficacy of Immune Checkpoint Blockade
- Restricted to some cancers and some patients
- PD-L1 and PD-L2 are widely expressed by tumor cells and the immunosuppressive stroma
- Blocking only PD-1 or PD-L1 does not address the whole pathway
- Bispecific antibodies offer dual ligand blockade
- Fc region modification can enhance antibody functionality

Objectives

- Compare the efficacy of Fc-modified human anti-PD-L1/2 bispecific antibodies (BsAbs) and clinical anti-PD-L1 antibodies to induce antibody dependent cell-mediated cytotoxicity (ADCC).
- Investigate whether the human anti-PD-L1/2 BsAbs have the same binding region on PD-L1 or PD-L2 as clinical or commercial antibodies.
- Examine the in vivo efficacy of anti-PD-L1/2 BsAbs within a cancer cell model.

Methodology

ADCC assay

Flow Competition assay

Colon cancer model

Results

- BsAbs:
 - targeting PD-L1 and PD-L2 and bearing the Fc modification promote superior ADCC activity against target cells that express either ligand by effector cells expressing Fc receptors.
 - mostly share the same epitope as clinical anti-PD-L1 monospecific antibodies.
 - possess higher in vivo efficacy than a reference anti-PD-1 therapeutic antibody.

Future Directions

- Assess the survival benefit of targeting PD-L1/2 for ADCC and its combination with other immunotherapies in vivo.
- Investigate the interactions between the structure of human PD-L1/2 extracellular regions and the anti-PD-L1/2 BsAbs using nuclear measured resonance (NMR).
- Determine and compare the binding affinity of these interactions measured by surface plasmon resonance.

Conclusions

- BsAbs: targeting PD-L1 and PD-L2 and bearing the Fc modification promote superior ADCC activity against target cells that express either ligand by effector cells expressing Fc receptors.
- mostly share the same epitope as clinical anti-PD-L1 monospecific antibodies.
- possess higher in vivo efficacy than a reference anti-PD-1 therapeutic antibody.

Acknowledgements

- All Curran members

References

1. Boyerinas B, Schlom, J et al.
2. Latchman Y, Freeman, GJ et al.
5. Davis, S, Freeman, GJ et al.
7. Yearley JH, McLanahan, T et al.
8. Hofmeyer, KA, Zang, X et al.