

Modified bispecific antibodies blocking both PD-L1 and PD-L2 engagement of PD-1 show higher ADCC potential and *in vivo* anti-tumor response

Ashley Gelin, Coline A. Couillault, Anupallavi Srinivasamani, Qinying Liu, and Michael A. Curran Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

Background

- High efficacy of Immune Checkpoint Blockade
- Restricted to some cancers and some patients
- PD-L1 and PD-L2 are widely expressed by tumor cells and the immunosuppressive stroma

PD-L2

PD-L1

- Blocking only PD-1 or PD-L1 does not address the whole pathway
- Bispecific antibodies offer dual ligand blockade
- Fc region modification can enhance antibody functionality

Objectives

- Compare the efficacy of Fc-modified human anti-PD-L1/2 bispecific antibodies (BsAbs) and clinical anti-PD-L1 antibodies to induce antibody dependent cell-mediated cytotoxicity (ADCC).
- Investigate whether the human anti-PD-

Figure 1: Modified bsAbs induce higher ADCC activation than clinical anti-PD-L1 antibodies.

Results

Conclusions

- BsAbs:
- targeting PD-L1 and PD-L2 and bearing the Fc modification promote superior ADCC activity against target cells that express either ligand by effector cells expressing Fc receptors.
- mostly share the same epitope as clinical anti-PD-L1 monospecific antibodies.
- possess higher in vivo efficacy than a reference anti-PD-1 therapeutic antibody.

Future Directions

Assess the survival benefit of targeting PD-L1/2 for ADCC and its combination with other immunotherapies *in vivo*.
Investigate the interactions between the structure of human PD-L1/2 extracellular regions and the anti-PD-L1/2 extracellular regions and the anti-PD-L1/2 BsAbs using nuclear measured resonance (NMR).
Determine and compare the binding affinity of these interactions measured by surface plasmon resonance.

L1/2 BsAbs have the same binding region on PD-L1 or PD-L2 as clinical or commercial antibodies.

• Examine the *in vivo* efficacy of anti-PD-L1/2 BsAbs within a cancer cell model.

Methodology

ADCC assay

Colon cancer model

Figure 2: Modified bsAbs mostly share the same binding region on PD-L1 as clinical anti-PD-L1 antibodies.

Tumor Growth

Figure 3: Modified bsAbs demonstrate higher *in vivo* efficacy than an anti-PD-1 antibody

Acknowledgements

All Curran members

References

- 1. Boyerinas B, Schlom, J et al.
- 2. Latchman Y, Freeman, GJ et al.
- 3. Curran MA, Allison JP et al.
- 4. Cheng, X, Davis, SJ et al.
- 5. Davis, S, Freeman, GJ et al.
- 6. Karunarathne, DS, Wykes, MN et al.
- 7. Yearley JH, Mcclanahan, T et al.
- 8. Hofmeyer, KA, Zang, X et al.