Introduction

SMARCB1 is one of the core subunits of the SWI/SNF complex, an ATP-dependent chromatin remodelling complex.

Malignancies are characterized by simple genomes and lack of somatic events, suggesting that the dysregulation of the SWI/SNF machinery is sufficient to drive highly malignant states [1].

Although SWI/SNF dysregulations are related to approximately 20% of human malignancies [2], lack of conditional genetic models of SMARCB1-deficient tumors has made it difficult to investigate the molecular bases and dependencies associated with SMARCB1 loss due to the embryonic lethality associated with SWI/SNF disruption.

Renal medullary carcinoma (RMC), an aggressive renal tumor that afflicts primarily young individuals of African descent with sickle cell trait [3]. RMC is also characterized by the complete loss of the SMARCB1 tumor suppressor [4], positioning it as an ideal tumor model for studying the role of SWI/SNF dysregulation in tumorigenesis.

We hypothesize that sickling red blood cells are promoting a hypoxic microenvironment in the renal medulla that is selecting for the loss of the tumor suppressor SMARCB1.

Results

SMARCB1 devoid tumors are resistant to hypoxic conditions, while SMARCB1-proficient tumors are sensitive to hypoxic conditions. (a) Western blotting analysis of MCT1 cells co-overexpressing either SMARCB1wt or SMARCB1K62R constructs. MCT1 cells co-overexpressing either SMARCB1wt or SMARCB1K62R, and SMARCB1K62R grown in either normoxia or hypoxia. (b) CD6 was detected in 10% human kidney samples as shown above. Immunohistochemistry Images of hypoxia-inducible factor (HIF)-alpha antibody with SMARCB1wt, SMARCB1K62R, and SMARCB1K62R after prolonged exposure to normoxia and hypoxia. P-values were calculated with Student’s t-test in Prism GraphPad.

Future Direction

- Elucidate the E3 ubiquitin ligase involved in ubiquitinating SMARCB1.

- Investigate the role of the SWI/SNF complex in hypoxia response.

Conclusion

SMARCB1 is degraded via ubiquitin-mediated proteasomal degradation pathway during extreme hypoxic stress.

SMARCB1-deficient kidney cells are resistant to hypoxia stress and maintain viability and growth compared to SMARCB1-proficient counterparts.

Impairing the degradation of SMARCB1 with lysine residue mutation K62 decreases cell viability and increases senescence under hypoxic stress, suggesting that SMARCB1-deficiency is selected for and required for survival under hypoxic stress.

Technique/Methods

1. **Renal ischemia is associated with chronic hypoxia in sickle cell trait mouse.** (a) Schematic of genetically engineered mouse model (GEMM) (b) 3D confocal reconstruction of renal epithelia (EPI) and FITC-dextran (GFP) in adult mice (n=4-5) with kidney-specific CDH50™ and conditional ROFL™ (c). Quantification of the diameter (d) and length (l) of the blood vessels (1 = white/atheroma, 3 = lobules) is possible. (d) H&E of mice kidney after injection with HypoxiPink (0). Quantification of the optical density of hemispheric periostum (HPP) staining for 30 images was done using ImageJ. Data are expressed as mean value ± SEM, with P-value calculated by student’s t test. (e) Immunofluorescence (IF) analysis of HypoxiPink (red) levels in wild-type mice (n=5) compared to sickle cell trait mice (n=3). Aquaporin 2 (AQP2, green) was used to localize renal medullary region.

2. **SMARCB1 regulates the hypoxic stress response in sickle cell trait during the pathogenesis of renal medullary carcinoma.**

 | Melinda Soeung1,2, Luigi Perrelli2,3, Ziheng Chen1,4, Eleonora Dondossola2,3, Lihun Ho1, Federica Carbone1, Michael D. Peoples6, Ningping Feng2, Rosalba Minelli1, Chiui Zhu2, Courtney N. Lee1, Hania Khan3, Shan Jiang2, Daniel D. Shapiro2,5, Angela K. Deem2, Sisi Gao1, Emily H. Cheng2, Cheryl L. Walker4, Alessandro Carugò2,5, Timothy P. Heffernan6, Andrea Viale1, Nizar M. Tannir7, Giulio F. Draetta8, Pavlos Masseas2,2,9, Giannicola Genovese2,2,5, Michael E. Pavlov1,2,6,†|}

3. **Depression of Genitourinary Medicine. The University of Texas MD Anderson Cancer Center, USA. 2 Department of Genitourinary Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA. 3Department of Oncology, Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, USA. 4Department of Pathology, Memorial Sloan Kettering Cancer Institute, New York, NY 10065, USA. 5Center for Precision Environmental Health. Baylor College of Medicine, Houston, USA. 6Department of Translational Research to Advance Therapeutics and Innovation in Oncology (TRACTION). The University of Texas MD Anderson Cancer Center, Houston, USA. 7Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA. 8Human Oncology & Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Institute, New York, NY 10065, USA. 9Nerviano Medical Sciences, NMS Group Spa, 20014, Nerviano, Milan, Italy. |