Background

• Focused ultrasound (FUS) refers to ultrasound that is focused via a transducer, lens, or phased array.
• The pressure induced by FUS is highest at the focus and minimal elsewhere, so tissue outside the focus is not damaged during treatment.
• FUS offers a non-invasive way to treat small targets (mm in size) deep inside the body and brain.
• For example, the thalamus of the brain is targeted for FUS-based treatment of essential tremor and Parkinson’s tremors.

Objectives

We aimed to calculate the position and orientation of an ultrasound focus for a given position and orientation of the transducer, as well as assess whether the transducer would be able to transmit ultrasound through the skull at a given point.

Methods

• Collect MRI data for the following:
 - Multiple subjects wearing transducer
 - Transducer alone
 - Subjects with fiducial (small object used as a reference point) on side of head

• Import MRI data into MATLAB
• Fit surface to skull, calculate normal vectors at surface
• Use linear static analysis to calculate location of ultrasound focus
• Translate and rotate focus for different positions of transducer
• Assess curvature of skull based on normal vectors

Results

MRI data was collected with the Siemens MAGNETOM Prisma MRI machine at 3T.

• The MRI data were analyzed in MATLAB.
• The MRI image was processed to show only the surface of the subject’s head.
• This full head surface was cropped to show only the part of the surface where the transducer would be placed.

• The fit was calculated for a head surface with a fiducial (small vitamin pill) attached to the head as a placeholder for the transducer.
• Thus, it was necessary to remove the voxels representing the fiducial.

Conclusions

• Calculating the location of the ultrasound beam in the individual’s brain is an important first step in using FUS for neuromodulation.
• Future work will determine the accuracy of our model in calculating the location of the ultrasound focus through comparison with experimental values.

Acknowledgments

This project was supported by the Robert and Janice McNair Foundation.

References