Introduction

Intrahepatic cholangiocarcinoma (iCCA), a rare form of liver cancer (0.3 – 6 for every 100,000 people) [1], has seen an increase in incidence and mortality in recent years [1]. Typically, patients diagnosed have a 5-year survival rate of 7-20% [2]. Thus, elucidating the molecular underpinnings of tumor progression are paramount. Here, single-cell RNA sequencing (scRNAseq) collected from six CCA patients was analyzed to discover ligand-receptor interactions between different cell types across various tissue compartments (central area of the tumor, tumor periphery and adjacent normal) in order to better understand the tumor progression of iCCA.

Materials & Methods

Liver resection samples for six patients were processed using 10x Genomics 5' RNA kits. Libraries were multiplexed and sequenced using an Illumina platform sequencer. Raw reads were subsequently aligned and converted to matrix files using CellRanger analysis pipelines, provided by 10x Genomics software. Downstream scRNAseq analysis was done using R packages Seurat [3], scMC [4], and CellChat [5].

Results

![Fig. 2 Cell Clustering](image)

(A) Seven cell-type specific clusters were generated from 17,996 cells. (B) Quantification of cell types based on location and sample ID (patient number and compartment) to display the cell-type distribution. (C) Markers used to identify cell types.

![Fig. 3 Multimodal Presentation of Ligand-Receptor Interactions](image)

(A) Signaling from epithelial and B-cells with other cell. As a source, B-cells exude strong signaling with myeloid and T-cells. Ligands on epithelial cells strongly signal to receptors on B-cells, myeloid cells, and T-cells. (B) Pathways determined by quantification of ligand and receptor transcripts per cell type were used to map incoming and outgoing signaling. Mapping based on general patterns and molecular groups within patterns. Arrows represent pathway signaling innate to cell groups, confirming cell type characterization accuracy (ie: incoming communications of target cells, T-cells, myeloid, and general immune cells follow Pattern 2, having an immune-like signature of MHC I/II and the complement system. For outgoing communications, collagen and laminin pathways are signaled by fibroblasts via Pattern 1).

Conclusions

In this study, we utilized CellChat to predict significant interactions among seven cell types present in the patient tissue samples derived from scRNAseq data. Interactions were examined across three tissue compartments to determine location-specific ligand-receptor interactions present. Moving forward, we will validate ligand-receptor pairs in tissue blocks by applying multiplex immunohistochemistry. By identifying important cell-to-cell interactions that potentially promote tumor progression, we can develop a strategy for targeted therapeutics against this deadly cancer, as a true application of precision-medicine approaches.

Acknowledgments

This work was supported by a GE in-kind grant. Thank you to the members of Maitra Lab and Koay Lab for guidance, analysis, and reagents.

References