BACKGROUND

- Little is known about the long-term effects of cancer treatments, particularly in older women.
- The objective of this study was to assess the long-term impact of chemotherapy on the cognitive function of older breast cancer survivors.

METHODS

- Eligibility criteria:
 - Patients in the Texas Cancer Registry (TCR) and Medicare dataset
 - ≥ 65 years old at diagnosis,
 - Localized or regional stage breast cancer,
 - Diagnosed in 2012 and 2013,
 - Still alive in 2018.
- 4591 survivors were mailed a survey (with a $10 gift card) that included the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog V3) instrument.
- Demographic and clinical variables were collected using a self-administered questionnaire, data from TCR, and Medicare claims.
- A follow-up questionnaire was mailed to non-responders at 4-6 weeks and 8-10 weeks after initial mailing.
- Kruskal-Wallis and Wilcoxon tests were conducted to evaluate differences in FACT-Cog V3 primary score and sub-scale scores.
- Linear regression model was conducted to examine the significance of receiving chemotherapy.

Figure 1: Selection of study participants

RESULTS

- 985 survivors completed all four portions of the FACT-Cog V3 (22% response rate).
- Median time from diagnosis to survey completion was 68 months.

*Remaining data has been collected but will be analyzed and presented at a later date

CONCLUSIONS

The results of this study will help inform future doctors on whether chemotherapy should be utilized in older patients or not. The potential risk of decreased cognitive function highlights the importance of patient-centered discussions in order to make an informed decision on a patient’s treatment plan to ensure the best quality of life for older breast cancer patients.

REFERENCES

FUNDING

This study was supported by the Cancer Prevention Research Institute of Texas (CPRIT) Comparative Effectiveness Research on Cancer in Texas (CERCIT) award (RP160674-P2; Principal Investigator: Sharon Giordano).

Rachel Kim was supported by a NIH/NCI R25CA056452 educational grant award (Shine Chang, Ph.D., Principal Investigator).