Hypoxia-inducible factor 1α (HIF1α) in kidney cancer

Dalia L. Karimi¹, Daisha Lewis¹, Pedro Pesquera², Tapati Maity², Nasir Uddin³, Pavlos Msaouel⁴, Steve Millward³, Niki M. Zacharias¹

¹Partnership for Careers in Cancer Science and Medicine, ²Department of Urology, ³Cancer Systems Imaging, ⁴Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX

Introduction

Renal cell carcinoma (RCC), which accounts for approximately 90% of kidney cancers, encompasses more than 10 different cancer subtypes that vary in their severity [1,2]. These RCC subtypes are known to be biologically distinct from each other and these differences between subtypes can be used to create targeted therapies.

Clear cell renal carcinoma (ccRCC) is the most common kidney cancer. Approximately 90% of ccRCC tumors bear inactivating mutations in the von Hippel-Lindau (VHL) gene, which codes for the VHL protein [1]. In normal tissue, HIF1α and HIF2α accumulate in cells exposed to hypoxia. After oxygen levels are restored, HIF1α and HIF2α are degraded through a protein complex involving VHL protein. In ccRCC, inactivating mutations in the VHL gene disable the VHL protein.

Renal medullary carcinoma (RMC) is a rare but aggressive kidney cancer. It is characterized by complete SMARCB1 loss. It has been found to have high expression of HIF1α [2].

Background

When oxygen is present, prolyl hydroxylase (PHD) recognizes HIF1α and HIF2α. This leads to VHL recognition and ubiquitination (Ub) and degradation of the protein.

HIF1α and HIF2α have to dimerize with HIF1β to act as a transcription factor. It is the dimer that leads to transcription of genes associated with glycolysis, glucose uptake, angiogenesis, and lower oxidative phosphorylation [1].

Hypothesis

Our overall hypothesis is that inhibiting HIF1α dimerization with HIF1β will lead to reduction of HIF signaling in kidney cancer and lead to reduced tumor growth.

Goals

(1) To visualize HIF1α signaling in ccRCC and RMC cell lines.
(2) To determine if current small molecules that inhibit HIF signaling have activity in ccRCC and RMC cell lines.

Result

Experiment 1: Visualizing HIF signaling

Figure 2: Vector to observe HIF1α signaling.
HIF1α transcriptional response elements (TREs) are placed upstream of a minimal CMV promoter (mCMV) which together drive co-expression of fLuc and GFP in response to HIF-1 activity. The result is the ability to quantitatively measure HIF-1 activity using both fluorescence and luciferase activity. Used ampicillin resistance to determine which cells were transfected. The vector allowed us to determine if HIF1α was expressed in the cell. When HIF1α was present – the transfected cells expressed GFP and luciferase.

Figure 3: Bioluminescence of kidney cancer cells transfected with HIF1α signaling vector.
We used two ccRCC cell lines: RCC4 with VHL (RCC4 + VHL) and RCC4 without VHL (RCC4 - VHL) [3]. RCC4 + VHL has a fully functional VHL protein while RCC4 - VHL is VHL null. The RCC4 - VHL null cell line is known to have higher expression of HIF1α than RCC4 + VHL cell line [3]. In addition to RCC4, we used RMC cell lines RMC2C and UOK360. Method: Luciferin dissolved in phosphate buffer was added to 6-well plates (25 µl per well) and incubated for 10 minutes prior to imaging.

Bilumenescence was imaged using an IVIS Imager (Perkin Elmer).

Experiment 2: Validating HIF signaling

Figure 4: To validate that we were observing HIF1α expression with bioluminescence, we tested 4 siRNAs against HIF1α in RCC4 -VHL cells. We labeled the siRNAs A, B, C, and D. We observe 60% reduction in bioluminescence 48 hours after siRNA D is added to the media compared to the transfection reagent alone.

Method. We made three 6 well plates (plate 1: DMSO and media, only plate 2: cells treated with PT2399, Plate 3: cells treated with PX-478). Mixed 8 ml of 2x media with 2 ml of FBS (20%), and 5 ml of 3% agarose solution to get 1% agarose solution. Added 2 ml per well. Then added 6.5 ml of media, media only. 48 hours after siRNA D is added to the media compared to the transfection reagent alone.

Figure 7: Soft agar assay in ccRCC cell 786-O using HIF2α inhibitor (PT2399) [4]. We are expecting a similar result from our soft agar experiment.

Conclusion

We were able to generate transfected cell lines that express luciferase and GFP when HIF1α is expressed.

We were able to illustrate that luciferase activity was dependent on HIF1α expression using siRNA D knockdown.

We are in the process of determining if HIF1α inhibition reduces cell proliferation in soft agar colony assay. We are still optimizing the number of cells to use in the assay.

Future Direction

We are testing other methods to assess if HIF1α inhibition affects cell growth. Such as:

• We are in process of viral transfection of sgRNA against HIF1α. This would create ccRCC and RCC cell lines that have reduced HIF1α expression.

• Determining if we can observe reduced cell proliferation in soft agar assays with luciferase/ bioluminescence readout.

• Not discussed in the poster is the mRNA display work being done by Nasir Uddin to generate a cyclic peptide that will inhibit the dimerization of HIF1α with HIF1β.

Limitations

We are still in the process of proving our hypothesis. We are currently tested 4 cell lines and all work as been done in cell culture.

References

Acknowledgement

Funding: CDMRP Kidney Cancer Concept Award (W81XWH-21-1-0435; PI: Niki Zacharias Millward)