APR-246 induces ferroptosis and overcomes cisplatin resistance in ovarian cancer
Ana Hernandez, Codi Mai, Shady Tantawy, Mary Ayres, Zahid Siddik, Varsha Gandhi
Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center

Background
- Ovarian cancer (OC) is the fifth deadliest cancer in women and is predicted to cause nearly 13,000 deaths in the United States in 2022.
- p53 is a well-studied tumor suppressor gene responsible for regulating the cell cycle and inducing apoptosis. Mutations in p53 are therefore associated with increased cell proliferation and aggressive forms of cancer.
- 96% of high-grade serous ovarian cancers express mutations in p53.
- APR-246 is a novel small molecule thiol-reactive drug, thus restoring p53 activity by targeting C277 in the protein’s core domain.
- APR-246 is also capable of suppressing the function of thiol-based antioxidants, such as glutathione (GSH), suggesting an ability to induce cell death by increasing intracellular reactive oxygen species (ROS).
- Ferroptosis is an iron-dependent mechanism of programmed cell death characterized by lipid peroxidation due to the accumulation of ROS which may be combatted with antioxidants, such as GSH.
- The mechanism by which APR-246 induces cell death in ovarian cancer is currently under study with recent data suggesting a link to ferroptosis and GSH deficiency. We have, therefore, examined this effect in p53 knockout cells to exclude p53-dependent apoptotic events.

Methods
A2780 parental and CRISPR-induced p53-knockout (KO) cisplatin (CP)- resistant A2780 cell lines were used.

Results: Cell Death & p53

Figure 2. APR-246 induces cell death in ovarian cancer irrespective of p53 status.

Figure 3. APR-246 results in dose-dependent glutathione depletion.

Figure 4. APR-246 increases ROS which was partially rescued by catalase.

Results: Rescue Experiments

Figure 5. Antioxidants rescue cell death induced by APR-246. n=2, p<0.05*, p<0.001**

Figure 6. APR-246 increases lipid peroxidation which was completely rescued by liperoxstatin.

Results: APR-246 & Cisplatin

15-30% of patients with OC develop resistance to platinating agents, making re-sensitization imperative. To study the effects of platinum, we used parental and cisplatin-resistant A2780 cell lines.

Results: Nucleotide Pool Analyses

Using PCA analyses, we were able to quantify the nucleotide concentration in all four A2780 cell lines according to two different doses of APR-246.

Conclusions
- APR-246 induces GSH depletion associated with ferroptosis in ovarian cancer cell line A2780 as evidenced by increased lipid peroxidation and oxidative stress, which is rescued by ferroptosis inhibitors and antioxidants, respectively.
- Catalase can rescue ferroptosis by mitigating the oxidative stress necessary for lipid peroxidation which is induced by APR-246.
- APR-246 has a synergistic effect on the A2780 parental cell line when combined with cisplatin, causing a 52% decrease in IC50.
- APR-246 sensitizes the A2780 cisplatin-resistant cell line to cisplatin as evidenced by an increase in cell death.
- Future experiments will aim to replicate and further confirm the occurrence of ferroptosis with the use of iron chelators.

Acknowledgements
This presentation is supported by the Partnership for Careers in Cancer Science and Medicine Summer Experience Program at the University of Texas MD Anderson Cancer Center. Images were produced using BioRender.

References