Methods

<table>
<thead>
<tr>
<th>Group</th>
<th>D0</th>
<th>D21</th>
<th>ICIs</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CII-CFA</td>
<td>CII-IFA</td>
<td>None</td>
<td>Negative Cont</td>
</tr>
<tr>
<td>B</td>
<td>CII-CFA</td>
<td>CII-IFA</td>
<td>aCTLA-4</td>
<td>Group of Interest</td>
</tr>
<tr>
<td>C</td>
<td>CII-CFA</td>
<td>CII-IFA</td>
<td>aPD-1</td>
<td>Group of Interest</td>
</tr>
<tr>
<td>D</td>
<td>CII-CFA</td>
<td>CII-IFA</td>
<td>aCTLA-4 + aPD-1</td>
<td>Group of Interest</td>
</tr>
<tr>
<td>E</td>
<td>CII-CFA</td>
<td>CII-IFA</td>
<td>None</td>
<td>Positive Cont</td>
</tr>
</tbody>
</table>

Results

![Fig 1](image1.png)

- Percentage of CD11b+ DCs
- Percentage of DC11b
- Percentage of CD11b-F4/80+ subM2
- Percentage of CD11c

Fig 1. (A) Arthritis score at different time points (left panel). One-way ANOVA test. *P = 0.05, ****P<0.0001. (B) Representative pictures of CIA-CFA+CII-IFA mice receiving PBS (no ICi) or ICi. (C) Arthritis score over time based on ICi regimen.

![Fig 2](image2.png)

- Percentage of CD11b+ DCs
- Percentage of DC11b
- Percentage of CD11b-F4/80+ subM2
- Percentage of CD11c

Fig 2. Delineation of major immune cell subsets in spleen. (A) Gating strategy for Flow Cytometry analysis. (B) Quantitative analysis.

![Fig 3](image3.png)

- Percentage of CD4+ T cells
- Percentage of CD8+ T cells
- Percentage of CD19
- Percentage of CD11b

Fig 3. Delineation of major T cell subsets in spleen. (A) Gating strategy for Flow Cytometry analysis. (B) Quantitative analysis.

Conclusion

- Compared with PD-1 inhibitor arthritis group, Th17, Th1,17, CXCR5+ CD8 T cells, Tc1, Tc1,17 were expanded in the combined ICi arthritis group.
- In contrast, TNFα+ CD4 T cells, GM-CSF+ CD8 T cells, both pro-inflammatory and anti-inflammatory Tregs were expanded in PD-1 inhibitor arthritis group.
- Together, like humans, our data suggested that immune profiles underpinning arthritis differ by ICi regimen in our in vivo system.
- We successfully generated in vivo murine model recapitulating the human arthritis-irAE settings. Our model will serve as a powerful tool for us to understand mechanisms underlying arthritis-irAE as well as formulate appropriate therapeutic strategies for arthritis-irAE.

Future Directions

1. Since CTLA-4 monotherapy group developed arthritis rapidly on D32 after first ICi immunization, we need to analyze mice before D32.
2. Experiment needs to be repeated in order to detect pro-inflammatory and anti-inflammatory Tregs and other intracellular cytokine changes between groups of interest.

Acknowledge

- I am grateful for Dr. Kim’s extraordinary mentorship. I am also thankful to Dr. Nurieva and all Dr. Nurieva’s lab members for help and support in improving experimental skills.
- This work was supported by the University of Texas MD Anderson Cancer Center Division of Internal Medicine Developmental Funds (STK), National Institutes of Health (NII) R01 grants (RN: R01HL141966 and R01HL143520), Cancer Prevention and Research Institute of Texas grant (RN: RP190632), Wilkes Melanoma Foundation Grant (STK, RN, PW, and AD), and the CPRIT Research Training Program at MD Anderson Cancer Center (KK and SW).
- I am thankful to the Program Manager, Ms. Britney Edwards, and Program Directors - Drs. Khandan Keyomarsi, Stephanie Watowich, and Kara Lewis - for CPRIT Research Training Grant for guidance and support.

References