Analyzing the Effects of MG132 on Tumor Xenografts, the Ras pathway, and HPK1 function

Mia Lee1, Rohan Moniruzzaman, Ph.D.2, Hua Wang, M.D., Ph.D.3, Huamin Wang, M.D., Ph.D.2

1University of Texas at Austin, Austin, TX; 2Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX; 3Gastrointestinal Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX

Background

- Pancreatic cancer has a 5-year survival rate of only 9%.1
- The RAS pathway, which regulates cell growth, is mutated in nearly 100% of pancreatic ductal adenocarcinoma cases (PDA), making it a critical therapeutic target.2

Background (continued)

- Hematopoietic progenitor kinase (HPK1) is a regulator of cellular response to stress, proliferation, and apoptosis.6
- HPK1 loss is present in >95% of pancreatic cases and is correlated to PDA.6
- MG132 is a proteasome inhibitor, which blocks the degradation of proteins. However, a comprehensive mechanism of action is still unclear.2

Hypothesis

It is hypothesized that a decrease in tumor size is due to MG132 stabilizing HPK1 levels and influencing the Ras pathway.

Methods

- Tumor cells were grafted through subcutaneous injection.
- Mice were injected with MG132 twice over the span of two days.
- Tumor growth was assessed via measurements performed every three days for two weeks.
- HPK1 and ERK levels were analyzed through Western blot analysis.

Results

Figure 4. MG132 treatment appears to suppress tumor growth and increase phospho-ERK and HPK1 levels.

Conclusions

- MG132 appears to suppress tumor xenograft growth in mice.
- If MG132 inhibits the Ras pathway, it could be applied to tumor suppression treatments in pancreatic cancer and other malignancies.
- Further study could include comparison of how different Ras mutant cell lines respond to treatment with MG132.

References


Acknowledgements: Research for this publication was supported by the [National Institutes of Health] (00001167-RN02). For further information, please contact [Ma Lee] at [ml@utexas.edu].