Objective
- The exact mechanisms of peripheral sensitization in the context of perineural invasion are still poorly understood.
- A critical understanding of how early sensitization occurs represents a promising strategy for prevention, drug development, and treatment of cancer pain.

Introduction
- Pain in patients with cancer constitutes the most prevalent symptom, accounting for significant deterioration in their quality of life.
- Cancer pain is viewed as a process orchestrated by the release of pro-nociceptive molecules and the invasion of neural structures, referred to as perineural invasion.
- Early in tumor development, the release of pro-inflammatory molecules leads to the activation of receptors located on sensory neurons and surrounding support cells, promoting the sensitization of nociceptors, which transmit pain to the central nervous system.

Methods
Animals
Male Sprague-Dawley rats housed in temperature- and light-controlled conditions with food and water available ad libitum were used.

Cell Line
The human HNSCC cell line FaDu was used.

Co-culture Procedure
We have developed an in vitro model in which cancer cells are co-cultured with dorsal root ganglion (DRG) neurons, enabling us to study changes in neuronal activity that result from being in close proximity to—but not in direct contact with—FaDu cancer cells.

Chemiluminescence Assay
Human Neuro Discovery Antibody Array C2 was used to detect 30 human cytokines, including IL-6. Membranes were imaged by using Image Quant LAS 4000 Mini and cytokine spots in the membranes were quantified using ImageJ protein analyzer software.

Electrophysiology
Whole cell patch recording was performed to measure the electrical membrane properties of dissociated DRG sensory neurons. Glass coverslips were lifted and were transferred to a recording chamber placed on a microscope and perfused with oxygenated ACSF at room temperature. Whole cell recordings were completed within 20-28 hours after plating.

Results
- Co-cultured neurons from older adult male rats demonstrated spontaneous activity (SA) and depolarizing spontaneous fluctuations (DSFs) more frequently than media only control neurons. Increased spontaneous activity and large (>5mV) DSFs indicate neuronal sensitization, which could indicate enhanced nociceptive activity following exposure to FaDu cancer cells in vitro.

Conclusion
- Media conditioned by FaDu cancer cells contains many pro-inflammatory cytokines, chemokines, and growth factors known to sensitize neurons.
- Media collected after co-culture with FaDu and DRG neurons showed elevated levels of IL-6 (cytokine), which can directly induce spontaneous activity in vitro.
- Co-culture with FaDu cancer cells sensitized rat DRG neurons, with more robust effects seen in older adult rats.
- Neuronal hyperexcitability was characterized by lower current thresholds, large DSFs, spontaneous activity, and increased responses to current stimulation.
- Neuronal sensitization and mechanical allodynia were observed following treatment with exosomes released by FaDu cancer cells.
- Further studies will advance understanding of the mechanisms of peripheral sensitization and treatment and prevention of pain in patients with cancer.

References